NMR Studies of Three Types of Highly Coordinated Organotin Hydrides: Chemo-, Regio-, and Stereoselective Reduction of **2,3-Epoxy Ketones**

Takayo Kawakami, Ikuya Shibata, and Akio Baba*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565, Japan

Received July 11, 1995[®]

Three types of highly coordinated organotin hydrides, Bu₂SnIH-Lewis base (Lewis bases; HMPA or tripiperidinophosphine oxide) (type A), Bu_2SnFH -HMPA (type B), and Bu_3SnH - Bu_4NX (X = F, CN) (type C), were characterized as nucleophilic, chelation, and nonchelation types of reductants, respectively, in the reaction with 2,3-epoxy ketones 1. These reagents, which promoted a reduction of the epoxy ring and syn-selective and anti-selective carbonyl reduction, respectively, were spectroscopically confirmed with ¹H, ¹³C, ¹⁹F, and ¹¹⁹Sn NMR and FT-IR. Furthermore, the correlations between their structures and selective reducing abilities were discussed.

Introduction

Organotin hydrides are advantageous reductants in terms of their facile availability, moderate stability, and reactivity. Many types of tin hydrides are synthesized¹ and characterized 2^{-4} so that they are good candidates for effective reduction of polar multiple bonds such as carbonyl groups. However, in most cases, the reductions of organohalides by tri-n-butyltin hydride (Bu₃SnH) have been employed under radical conditions,^{2,3} and ionic reductions have not received much attention,^{2,4} probably owing to moderate reactivity of ionic tin hydrides.

Facile and stable complexation with various ligands is a prevalent feature of organotin compounds,⁵ which changes the structure and reactivity of original tin compounds. On the basis of this concept, we have already applied the coordinated tin compounds including organotin hydrides to organic synthesis.⁶ For example, Bu₃-SnH coordinated by HMPA reduces the carbonyl moiety of α -halo ketones in contrast to the halide-selective reduction by noncoordinated Bu₃SnH.⁷ In addition, two types of highly coordinated tin hydrides, the Bu₂SnFH-HMPA⁸ (type B) (Figure 1b) and $Bu_3SnH-Bu_4NX$ (X = F, CN) systems⁹ (type C) (Figure 1c), have been reported

 (a) Neumann, W. P. Angew. Chem. 1963, 225–235. (b) Kuivila,
(c) Kuivila, H. G. Adv. Organomet. Chem. 1964, 1, 47–87. (c) Kuivila, H. G. Synthesis 1970, 499–509. (d) Fisch, M. H.; Dannenberg, J. J.; Pereyre,
(c) Kuivila, H. G. Berger, W. F. L. Tatrabadron 1984. M.; Anderson, W. G.; Rens, J.; Grossman, W. E. L. *Tetrahedron* **1984**, 40, 293–297. (e) Neumann, W. P. *Synthesis* **1987**, 665–683. (f) Curran, D. P. Synthesis 1988, 417–439.
(4) High pressure,^{4a} MeOH solvent,^{4b} silica gel,^{4c} and ZnCl₂^{4d} catalyst

are also used for ionic reactions, besides transition metal (Pd, Rh) catalysts.^{4e-h} (a) Castaing, M. D.; Rahm, A. *J. Org. Chem.* **1986**, *51*, 665–683. (b) Pereyre, M.; Godet, J. Y. *Tetrahedron Lett.* **1970**, *51*, 3653–3656. (c) Fung, N. Y. M.; Mayo, P.; Schauble, J. H.; Weedon, A. C. J. Org. Chem. 1978, 43, 3977-3979. (d) Neumann, W. P.; Heymann, E. Liebigs Ann. Chem. 1965, 683, 11-23. (e) Zhang, H. X.; Guibé, F. E. Liengs Am. Chem. 1950, 083, 11–23. (c) Zhang, H. A., Guibe, F., Balavoine, G. Tetrahedron Lett. 1988, 29, 619–622. (f) Kikukawa, K.; Umekawa, H.; Wada, F.; Matsuda, T. Chem. Lett. 1988, 881–884.
(g) Cochran, J. C.; Bronk, B. S.; Terrence, K. M.; Phillips, H. K. Tetraheron Lett. 1990, 31, 6621–6624. (h) Zhang, H. X.; Guibé, F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857-1867.

(5) (a) Zubieta, J. A.; Zuckerman, J. J. Prog. Inorg. Chem. 1978, 24, 251-475. (b) Molloy, K. C. J. Chem. Soc., Dalton Trans. 1988, 1259-1266. (c) Harrison, P. G. Chemistry of Tin; Blackie & Son Limited .: New York, 1989; pp 202-208.

Figure 1.

to reduce the carbonyl moiety of 2,3-epoxy ketones 1 with high anti-8 and syn-selectivities,9c respectively (Scheme 1).

In this paper, we report a novel tin hydride system, Bu₂SnIH-Lewis base (Lewis bases; HMPA or tripiperidinophosphine oxide) (type A) (Figure 1a). In contrast to types B and C, the type A reagents chemo- and regioselectively reduced the epoxy ring of 2,3-epoxy ketones 1 without affecting the carbonyl group to give 3-hydroxy ketones 4 (Scheme 1). This reductive selectivity presumably resulted from the activated nucleophilicity of the Sn-I bond. Furthermore, we present the

(7) Shibata, I.; Suzuki, T.; Baba, A.; Matsuda, H. J. Chem. Soc., Chem. Commun. 1988, 882-883.

(8) Kawakami, T.; Shibata, I.; Baba, A.; Matsuda, H. *J. Org. Chem.* **1993**, *58*, 7608–7609.

[®] Abstract published in Advance ACS Abstracts, November 15, 1995. (1) (a) Finholt, A. E.; Bond, Jr. A. C.; Wilzbach, K. E.; Schlesinger,
H. I. J. Am. Chem. Soc. 1947, 69, 2692–2694. (b) Kerk, J. M.; Noltes,
J. G.; Luijten, J. G. A. J. Appl. Chem. 1957, 366–369.
(2) Pereyre, M.; Quintard, P. J.; Rahm, A. Tin in Organic Synthesis;

⁽⁶⁾ We have reported that the reactivity of organotin reagents, such as tin halides,^{6a-d} tin enolates,^{6e-l} and tin amides^{6m-p} were enhanced by H. Barders, E. H. Holates, and the animales of were emalted by the high coordination. (a) Baba, A.; Shibata, I.; Masuda, K.; Matsuda, H. Synthesis 1985, 1144–1146. (b) Shibata, I.; Baba, A.; Iwasaki, H.; Matsuda, H. J. Org. Chem. 1986, 51, 2177–2184. (c) Yano, K.; Anishika M. B. Baba, A.; Iwasaki, H.; Amishiro, N.; Baba, A.; Matsuda, H. Bull. Chem. Soc. Jpn. 1991, 64, 2661–2667. (d) Shibata, I.; Yoshimura, N.; Baba, A.; Matsuda, H. *Tetrahedron Lett.* **1992**, *33*, 7149–7152. (e) Baba, A.; Yasuda, M.; Yano, K.; Matsuda, H. *J. Chem. Soc., Perkin Trans.* **1 1990**, 3205–3207. (f) Shibata, I.; Nishio, M.; Baba, A.; Matsuda, H. Chem. Lett. 1993, 1219-1222. (g) Shibata, I.; Nishio, M.; Baba, A.; Matsuda, H. Chem. Lett. 1993, 1953-1956. (h) Shibata, I.; Nishio, M.; Baba, A.; Matsuda, H. J. Chem. Soc., Chem. Commun. **1993**, 1067–1068. (i) Yasuda, M.; Oh-hata, T.; Shibata, I.; Baba, A.; Matsuda, H. J. Chem. Soc., Perkin Trans. 1 1993, 859-865. (j) Shibata, I.; Baba, A. Org. Prep. Proc. Int. 1994, 26, 85–100. (k) Yasuda, M.; Kato, Y.; Shibata, I.; Baba, A.; Matsuda, H.; Sonoda, N. *J. Org. Chem.* **1994**, *59*, 4386–4392. (l) Yasuda, M.; Oh-hata, T.; Shibata, I.; Baba, A.; Matsuda, H.; Sonoda, N. *Bull. Chem.* Soc. Jpn. 1995, 68, 1180-1186. (m) Baba, A.; Kishiki, H.; Shibata, I.; Matsuda, H. Organometallics 1985, 4, 1329-1333. (n) Shibata, I.; Toyota, M.; Baba, A.; Matsuda, H. J. Org. Chem. 1990, 55, 2487–2489. (o) Shibata, I.; Nishio, M.; Baba, A.; Matsuda, H. J. Org. Chem. 1992, 57, 6909–6914. (p) Shibata, I.; Mori, Y.; Baba, A.; Matsuda, H. Tetrahedron Lett. 1993, 34, 6567-6570.

 $\label{eq:alpha} \textbf{A}: \textbf{Bu}_2 \textbf{Sn} \textbf{H} - \textbf{HMPA} \quad \textbf{B}: \textbf{Bu}_2 \textbf{Sn} \textbf{F} \textbf{H} - \textbf{HMPA} \quad \textbf{C}: \textbf{Bu}_3 \textbf{Sn} \textbf{H} - \textbf{Bu}_4 \textbf{NCN}$

systematic spectral studies of three types of these tin hydrides (types A-C) with ¹H, ¹³C, ¹⁹F, and ¹¹⁹Sn NMR and FT-IR and discuss the correlation between their structures and the divergent selectivities in the reduction of **1**.

Results

Chemoselective Reduction of Epoxides by Bu₂SnIH-Lewis Base Systems (Type A). If organotin hydride could possess a Sn-I bond, the reductive cleavage of epoxides is expected, because the efficient nucleophilic attack of iodide from the Sn-I bond to epoxy rings has already been demonstrated.6a,b Fortunately, Bu2-SnIH can be easily prepared by the redistribution reaction between Bu₂SnH₂ and Bu₂SnI₂.¹⁰ We have recently found that Bu₂SnIH characteristically has quite low reducing ability for aldehydes.¹¹ These facts led us to expect that Bu₂SnIH species could reduce the epoxy ring of 2,3-epoxy ketones 1 in tolerance of the carbonyl group. The attempt to reduce 1c, however, resulted in a complicated mixture including the carbonyl reduction due to a lack of nucleophilicity of the Sn-I bond in Bu₂SnIH. This problem could be resolved by high coordination of Bu₂SnIH with HMPA, which chemoselectively reduced the epoxy ring of **1c** without any side reactions (entry 4, Table 1).

As shown in Table 1, **1a** (entry 1), terminal epoxy ketone **1b** (entry 3), and bicyclic epoxy ketones **1c,d** (entries 4 and 5) are readily reduced to 3-hydroxy ketones **4a-d**. No products arising from the carbonyl reduction were obtained. Noteworthy is the regioselective ring cleavage at the C2–O bond. In the case of **1a**, tripiperidinophosphine oxide is a more effective ligand than HMPA (entry 2). In contrast to Bu₂SnIH–HMPA, Bu₂-SnClH–HMPA¹² gave a complicated mixture in spite of the high coordination. The lower chemoselectivity of Bu₂-SnClH–HMPA indicates that the selective ring cleavage is due to the nucleophilicity of the halide anion.

Table 1. Chemoselective Epoxy Reduction of 2,3-Epoxy Ketone 1 by Bu₂SnIH-Lewis Base Systems^a

R ¹		u ₂ SnIH-Lewis ba		$\searrow R^2$
	0 0 1		Ö	о́н I
entry	epoxy ketone	Lewis base	conditions	yield (%) ^b
1	Ph, V.Me	HMPA	0°C∼rt , 4h	4a , 46
2)	TPPO ^c	rt , 18h	4a , 58
3	Ph J	НМРА	0°C , 1.5h	4b , 55
4		НМРА	rt , 1h	4c , 66 ^d
5		НМРА	0°C,1h	4d , 69 ^d

^{*a*} Epoxy ketone (1), 1 mmol, Bu₂SnH₂, 0.5 mmol, Bu₂SnI₂, 0.5 mmol, Lewis base, 1 mmol, THF, 1 mL. ^{*b*} Isolated yield. ^{*c*} Tripiperidinophosphine oxide. ^{*d*} GLC yield.

Scheme 2

A : Bu₂SnIH - HMPA B : Bu₂SnFH - HMPA C : Bu₃SnH - Bu₄NCN

Application to Stereocontrolled Synthesis of 1,2-Diols. The stereoselective synthesis of 1,2-diols from 2,3epoxy ketone **1e** was demonstrated by the combined use of the three types of tin hydrides (types A-C) (Scheme 2).

At the first stage, *anti-* and *syn-*2,3-epoxy alcohols **2e** and **3e** were prepared in the reduction of **1e** with Bu₂-SnFH–HMPA (type B) *via* the chelation intermediate and Bu₃SnH–Bu₄NCN (type C) *via* the nonchelation intermediate, respectively. Secondly, the isolated products, **2e** and **3e**, were further reduced by Bu₂SnIH–HMPA (type A), providing *anti-* and *syn-*1,2-diols, **5** and **6**, respectively (86% and 83% yields based on epoxy alcohols **2e** and **3e**). In contrast to the reduction of epoxy ketones **1**, the ring-opening took place at the C-3 position to hydroxy group without any side products. When LiAlH₄ and DIBAL-H were employed as reducing agents, in contrast to the tin hydrides, mixtures of 1,2-diol and 1,3-diol were obtained from 2,3-epoxy ketones and even from *syn-* or *anti-*2,3-epoxy alcohols.¹³

Spectroscopic Data for Bu₂SnIH–HMPA (Type A). We obtained the systematic spectral evidence for Bu₂-SnIH and the highly coordinated Bu₂SnIH–HMPA, as shown in Table 2.

^{(9) (}a) Shibata, I.; Yoshida, T.; Baba, A.; Matsuda, H. Chem. Lett. **1991**, 307–310. (b) Shibata, I.; Yoshida, T.; Kawakami, T.; Baba, A.; Matsuda, H. J. Org. Chem. **1992**, 57, 4049–4051. (c) Kawakami, T.; Shibata, I.; Baba, A.; Matsuda, H.; Sonoda, N. Tetrahedron Lett. **1994**, 35, 8625–8626.

^{(10) (}a) Neumann, W. P.; Pedain, J. *Tetrahedron Lett.* **1964**, 2461–2465. (b) Sawyer, A. K.; Brown, J. E.; Hanson, E. L. *J. Organomet. Chem.* **1965**, *3*, 464–471. (c) Sawyer, A. K.; George, S. M.; Scofield, R. E. J. Organomet. Chem. **1968**, *14*, 213–216.

⁽¹¹⁾ Kawakami, T.; Miyatake, M.; Shibata, I.; Baba, A. J. Org. Chem. 1996, 61, in press.

⁽¹²⁾ Kawakami, T.; Sugimoto, T.; Shibata, I.; Baba, A.; Matsuda, H.; Sonoda, N. *J. Org. Chem.* **1995**, *60*, 2677–2682.

⁽¹³⁾ Epoxy ketone **1a** (1 mmol) was reduced at 0 °C by LiAlH₄ (2 mmol) in THF (1 mL) to give 1,2-diol (21%, *syn:anti* = 26:74) and 1,3-diol (30% yield, *syn:anti* = 13:87). DIBAL-H (1.5 mmol) in toluene furnished a complex mixture in the reduction of **1a** (1.5 mmol). Epoxy alcohol **2a** (0.5 mmol) was reduced at -78 °C by DIBAL-H (0.5 mmol) in toluene (1 mL) to give 1,2-diol (4% yield) and 1,3-dilol (5% yield). For the LiAlH₄ reduction of epoxy alcohols, see: Takeshita, M.; Miura, M.; Unuma, Y. *J. Chem. Soc., Perkin Trans.* **1 1993**, 2901–2905.

Table 2. Spectral Data for Bu₂SnIH, Bu₂SnIH–HMPA and Bu₂SnFH–HMPA in THF-d₈

	Bu_2SnIH^a	Bu ₂ SnIH-HMPA ^b	Bu ₂ SnFH-HMPA ^c
FT-IR (neat) ν (Sn-H) (cm ⁻¹)	1846.1	1857.7	1869.2
$^{1}\mathrm{H}~\mathrm{NMR}$ δ (Sn $^{-1}\mathrm{H}$) (ppm)	6.41	7.18	7.44
	-76.3, d 2060 1968 399 (408/390) ^d	169.9, d 2349 2253 513°	-123.0, d 2428 2321 544(547/541) ^d

^a 8.0 M. ^b 8.2 M. ^c 8.0 M. ^d ¹¹⁸Sn/¹¹⁷Sn coupling values resolved. ^e Average value; ¹¹⁹Sn/¹¹⁷Sn splitting was not resolved.

Figure 2. ¹H-coupled ¹¹⁹Sn NMR spectra: (a) Bu_2SnI_2 , (b) Bu_2 -SnI₂ + Bu_2SnH_2 , (c) Bu_2SnI_2 + Bu_2SnH_2 + HMPA.

A complete transformation from Bu_2SnH_2 (-205.4 ppm) and Bu₂SnI₂ (Figure 2a) to Bu₂SnIH was confirmed with the ¹H-coupled ¹¹⁹Sn NMR spectra (Figure 2 b). The addition of an equimolar amount of HMPA to the resulting Bu₂SnIH caused not only a considerable upfield shift of δ ⁽¹¹⁹Sn) by 93.6 ppm (Figure 2c) but also the increase of the values of ${}^{1}J(Sn-{}^{1}H)$ and ${}^{1}J(Sn-{}^{13}C)$ by 289 and 114 Hz, respectively (Table 2), indicating the rehybrization of the tin orbital from sp^3 to $sp^{2.14}$ The coordination of the P=O group to the tin atom was also confirmed by FT-IR spectroscopic data.^{15,16} These data strongly suggest the formation of a five-coordinated tin hydride with a trigonal bipyramidal geometry,14,17 where the electronegative ligands, I and HMPA, are presumed to occupy apical positions as shown in Figure 1a.¹⁸ In addition, the increase of the s-character indicates that the Sn-H bond in Bu₂SnIH-HMPA is less reactive that that in Bu₂SnIH. In FT-IR spectroscopy, an increase of ν (Sn–H) by 11.6

Figure 3. $^1\text{H-coupled}$ ^{119}Sn NMR spectra: (a) Bu_2SnH_2 , (b) Bu_2SnF_2 + Bu_2SnH_2 + HMPA.

 cm^{-1} also exhibited the inactivation of the Sn-H bond by the coordination of HMPA.

Spectroscopic Data for Bu₂SnFH–HMPA (Type B). The redistribution to Bu₂SnFH is difficult compared with that to Bu₂SnIH because of poor solubility of Bu₂-SnF₂.^{10b} We have reported that the formation of Bu₂-SnFH swiftly proceeds in the presence of an equimolar amount of HMPA, providing a clear liquid (eq 1).⁸

Although some spectral studies of Bu₂SnClH have been performed so far,^{10b,12,19} only one example was reported concerning the ¹H NMR and IR spectra of Bu₂SnFH.^{10b} Fortunately, we acquired the characteristic spectral data to confirm the formation of Bu₂SnFH–HMPA, summarized in Table 2 with the spectral data for Bu₂SnIH and Bu₂SnIH–HMPA. The coordination of HMPA to Bu₂SnH₂ is apparently negligible because no spectral change was observed by mixing the two (see the Experimental Section). No NMR spectral data for Bu₂SnF₂ could be obtained even by the addition of HMPA because of its insolubility.

As shown in Figure 3a, the triplet peak due to Bu_2 -SnH₂ appeared at -205.4 ppm in the ¹H-coupled ¹¹⁹Sn NMR spectrum. In contrast, a new doublet peak was detected when Bu_2SnH_2 and Bu_2SnF_2 were mixed in the presence of HMPA (Figure 3b). At the same time, the peak due to Bu_2SnH_2 mostly disappeared. Unfortunately, the Sn-F coupling could not be detected in either ¹Hcoupled or ¹H-decoupled ¹¹⁹Sn NMR spectra because the widths at half-height are too large, 485 and 417 Hz, respectively. The presence of the fluorine atom was confirmed by the ¹⁹F NMR spectrum (-163.8 ppm), although the coupling between F and Sn was not observed because of the large width at half-height (1169 Hz). In the ¹H NMR spectrum, the Sn-H signal due to

^{(14) (}a) Holecek, J.; Nádvorník, M.; Handlír, K.; Lycka, A. J. Organomet. Chem. **1983**, 241, 177–184. (b) Birchall, T.; Manivannan, V. J. Chem. Soc., Dalton Trans. **1985**, 2671–2675. (c) Edlund, U.; Arshadi, M.; Johnels, D. J. Organomet. Chem. **1993**, 456, 57–60.

⁽¹⁵⁾ With HMPA, it was difficult to distinguish the P=O absorption; hence, Bu_3PO was alternatively employed. When an equimolar amount of Bu_3PO was added to Bu_2SnIH (1 mmol) in THF (3 mL), a decrease of 38.5 cm⁻¹ in the P=O stretching frequency (from 1170.9 cm⁻¹ to 1132.4 cm⁻¹) was observed.

^{(16) (}a) Kuivila, H. G.; Dixon, J. E.; Maxfield, P. L.; Scarpa, N. M.; Topka, T. M.; Tsai, K.; Wursthorn, K. R. J. Organomet. Chem. 1975, 86, 89–107. (b) Chopa, A. B.; Koll, L. C.; Savini, M. C.; Podestá, J. C.; Neumann, W. P. Organometallics 1985, 4, 1036–1041. (c) Ayala, A. D.; Giagante, N.; Podestá, J. C.; Neumann, W. P. J. Organomet. Chem. 1988, 340, 317–329. (d) Podestá, J. C.; Ayala, A. D.; Chopa, A. B.; Giagante, N. N. J. Organomet. Chem. 1989, 364, 39–55.

 ^{(17) (}a) Otera, J. J. Organomet. Chem. 1981, 221, 57–61. (b) Nádvorník, M.; Holecek, J.; Handlír, K.; Lycka, A. J. Organomet. Chem. 1984, 275, 43–51. (c) Lycka, A.; Holecek, J.; Nádvorník, M.; Handlír, K. J. Organomet. Chem. 1985, 280, 323–329. (d) Holecek, J.; Nádvorník, M.; Handlír, K.; Lycka, A. J. Organomet. Chem. 1986, 315, 299–308.

^{(18) (}a) McGardy M. M.; Tobias R. S. J. Am. Chem. Soc. **1965**, 87, 1909–1916. (b) Barbieri, G.; Taddei, F. J. Chem. Soc., Perkin Trans. 2 **1972**, 1327–1331.

^{(19) (}a) Kawakami, K.; Saito, T.; Okawara, R. J. Organomet. Chem. **1967**, 8, 377–381. (b) Mitchell, T. N. J. Organomet. Chem. **1973**, 59, 189–197.

Figure 4. ¹H-decoupled ¹¹⁹Sn NMR spectra of an equimolar mixture of Bu₃SnH and Bu₄NF in the presence of HMPA.

Bu₂SnFH is comprised 90% of the total Sn-H signal. These results indicate the effective formation of Bu₂-SnFH.

The next problem to be resolved is whether or not HMPA coordinates to Bu₂SnFH because no spectral data of a ligand-free Bu₂SnFH can be obtained. The large coupling constant values, ${}^{1}J(Sn-{}^{1}H)$ and ${}^{1}J(Sn-{}^{13}C)$, strongly suggest the formation of a complex in comparison with those of Bu₂SnIH-HMPA. An attempt to isolate a ligand-free Bu₂SnFH was unsuccessful because removing HMPA from Bu₂SnFH-HMPA system by washing with H₂O led to white solids, corresponding to Bu₂SnF₂, and Bu₂SnH₂ as confirmed by FT-IR. This fact indicates that the redistribution shown in eq 1 is reversible and that the unstable Bu₂SnFH produced is stabilized by the coordination of HMPA. Next, we confirmed the coordination from the P=O group to the tin atom of Bu₂SnFH with FT-IR spectroscopy by employing Bu₃PO instead of HMPA. When an equimolar amount of Bu₃-PO (1 mmol) was added to the mixture of Bu₂SnH₂ (0.5 mmol) and Bu₂SnF₂ (0.5 mmol) in THF (3 mL), the decrease of 42.4 cm⁻¹ in the P=O stretching frequency $(1170.9 \text{ to } 1128.5 \text{ cm}^{-1})$ was observed. Such a decrease strongly suggests the coordination of the P=O group to Bu₂SnFH.¹⁶ The above results indicate that Bu₂SnFH-HMPA is a five-coordinate tin hydride (Figure 1b).

NMR Studies of the Bu₃SnH-Bu₄NF System (Type C). Both Bu₃SnH–Bu₄NCN and Bu₃SnH–Bu₄NF afford the syn-selective carbonyl reduction of 2,3-epoxy ketones **1**.²⁰ We tried to obtain spectral evidence for the actual reducing species generated by the mixing of Bu₃SnH and Bu₄NF. The mixing of both compounds at ambient temperature caused the evolution of gas, which was further accelerated by the addition of HMPA. So, we stirred an equimolar mixture of Bu₃SnH and Bu₄NF at -78 °C in the presence of HMPA and monitored the mode of the reaction with ¹¹⁹Sn NMR shown in Figure 4.

The peak of Bu₃SnH (-90.3 ppm) gradually decreased as the temperature was raised and completely disappeared at ambient temperature. A new peak (in the range from -84 to -88 ppm) increased gradually. Furthermore, a small peak (-157.8 ppm, triplet at -30 °C) was detected which would be assigned as Bu₃SnF₂^{-.21}

Unfortunately, the direct spectral evidence for the formation of a stable complex of Bu₃SnH-Bu₄NF could not be obtained. The new peak at ca. -86 ppm in ¹¹⁹Sn NMR spectra was proved to be due to a ligand-free Bu3-SnSnBu₃, which was isolated from the reaction mixture after removal of Bu₄NF and HMPA.²² The formation of Bu₃SnSnBu₃ supports that the reaction shown in eq 2 takes place in $Bu_3SnH-Bu_4NX$ (X = F, CN) systems (type C).23

2 Bu₃SnH
$$\xrightarrow{Bu_4NX}$$
 Bu₃SnSnBu₃ + H₂ \uparrow (eq.2)

When Bu₃SnH was used alone or with HMPA, no gas evolution occurred and no peak except for the starting tin hydride was observed. Therefore, it seems reasonable that tetrabutylammonium salts greatly activate the Sn-H bond to such a degree that hydrogen gas evolves from Bu₃SnH. We presume the reactive species to be five-coordinate tin hydrides such as Figure 1c.

Discussion

NMR studies indicate that Bu₂SnIH-Lewis base complex (type A) has a trigonal bipyramidal geometry illustrated in Figure 1a. In this geometry, the nucleophilicity of iodide in the complex would be enhanced most effectively by Lewis base coordinating in a straight line. Furthermore, FT-IR spectra indicate that the nucleophilicity of hydride in Bu₂SnIH-Lewis base is decreased by the coordination of Lewis base. Both activation of the Sn-I bond and deactivation of the Sn-H bond by Lewis base probably contribute to the selective nucleophilic attack of iodide to epoxy rings prior to the carbonyl reduction by hydride.

Neither Bu₃SnH nor Bu₂SnH₂ could reduce the epoxy ring of 1c at room temperature even in the presence of HMPA. This result indicates that the cleavage of epoxy rings by the Sn-I bond is an essential step to achieve epoxide reductions. The reaction path would be explainable as follows. At first, an iodohydrin intermediate is produced by nucleophilic attack of iodide from the Sn-I bond to the epoxy ring (eq 3).²⁴ Then, the resulting alkyl

iodide group is reduced by the intramolecular (or inter-

⁽²⁰⁾ For example, in the reduction of 2,3-epoxy ketone 1a, Bu₃SnH-Bu₄NF provided syn-2,3-epoxy alcohol **3a** in 76% yield (82% de).

⁽²¹⁾ The peak due to $Bu_3SnF_2^-$ at -20 °C in the $Bu_3SnH-Bu_4NF$ (1:1) system (1.03 M with respect to tin hydride species in THF- d_8): ¹⁹F NMR δ -137.4 ppm (s, ¹J(¹⁹F-¹¹⁹Sn) = 1815 Hz, ¹J(¹⁹F-¹¹⁷Sn) = 1734 Hz); ¹¹⁹Sn NMR δ -155.6 ppm (t). For the ¹⁹F and ¹¹⁹Sn NMR spectra of Ph₃SnF₂⁻ see: Gingras, M.; Chan, T. H.; Harpp, D. N. J. Org. Chem. **1990**, 55, 2078–2090. (22) Sae the Experimental Section (21) The peak due to Bu₃SnF₂⁻ at -20 °C in the Bu₃SnH-Bu₄NF

⁽²²⁾ See the Experimental Section.

⁽²³⁾ In addition to $Bu_3SnH-Bu_4NF$, the evolution of gas was observed when Bu₃SnH (3.1 mmol) was added at room temperature to a solution of Bu₄NCN (2.8 mmol) in THF- d_8 (1 mL). ¹¹⁹Sn NMR spectrum was recorded at rt: ¹¹⁹Sn NMR δ –84.3 (s, ¹J(¹¹⁹Sn–¹¹⁹Sn) 2589 Hz, Bu₃SnSnBu₃).

⁽²⁴⁾ No iodohydrin intermediate could be isolated.

molecular) tin hydride moiety, providing an alcohol after quenching with MeOH.

In the reaction of 2,3-epoxy ketones 1, the ring cleavage takes place at the C2–O bond adjacent to the C=O group to provide 3-hydroxy ketones 4, while the nucleophilic attack to the C-3 position occurs in the reaction of 2,3epoxy alcohols 2e and 3e. This change of regioselectivity can be explained only presumably in this stage. The cleavage of the latter epoxides seems to proceed via a general nucleophilic attack.²⁵ On the other hand, the cleavage of the C2-O bond of the former is due to the coordination of only the carbonyl oxygen to the tin atom because of the low acidity of Bu₂SnIH-HMPA. Predominant cleavage at the C3-O bond has been reported when both carbonyl and epoxy oxygens can coordinate to metal halides.26

The complex, Bu₂SnFH-HMPA (type B), is spectroscopically confirmed to be a five-coordinate tin hydride, and its structure can be inferred from that of Bu₂SnIH-HMPA (type A), as shown in Figure 1b. Although the Sn-F bond in Bu₂SnFH-HMPA may be somewhat activated by the coordination of HMPA as in type A, only the carbonyl groups of 1 to anti-2,3-epoxy alcohols 2 were reduced without cleavage of epoxy rings because of the inherent low nucleophilicity of fluoride.8 The stereochemical outcome is explainable by assuming Cram's chelation model (Scheme 1).²⁷ In fact, when the reduction of 1e was carried out by Bu₃SnH in the presence of ZnCl₂ as a representative chelating reagent, the anti-selective carbonyl reduction proceeded via Cram's chelation model (46% yield, anti:syn = 88:12). That the high Lewis acidity of the tin center in Bu₂SnFH-HMPA increased by the highly electronegative fluorine substituent is quite possibly the reason why this chelation model is taken on in spite of the coordinate disturbance by HMPA.²⁸

A five-coordinated structure for $Bu_3SnH-Bu_4NX$ (X = F, CN) (type C) is plausibly assumed as illustrated in Figure 1c. The Sn–H bond in the complex would be activated by ligands more effectively than the bonds in type A and type B since it lies in an apical position only in type C. Therefore, the type C reagent acts as a typical hydride donor to reduce the carbonyl groups of 2,3-epoxy ketones 1 to syn-2,3-epoxy alcohols 3 via the nonchelation model (Felkin-Anh model)²⁹ (Scheme 1).^{9c} In general, a high degree of syn-selective carbonyl reduction of epoxy ketones 1 has not been achieved due to the difficulty of the complete removing of the coordination from epoxy oxygen to metal hydrides. The successful synselective reduction by the type C system strongly suggests the formation of an anion type of tin hydride complex like as $[Bu_3SnXH]^-[Bu_4N]^+$ (X = F, CN).

Conclusion. Systematic spectral studies of three different types (type A-C) of organotin hydrides have clarified the origins of their divergent reducing characteristics. Type A reagent, Bu₂SnIH–HMPA, acts as a nucleophilic iodide donor and reduces the epoxy ring of 1 chemo- and regioselectively. This complex is proved to have a trigonal bipyramidal geometry in which the

nucleophilicity of the iodide atom in the apical position is activated most greatly by the coordination of HMPA to cleave the epoxy ring effectively. Type B reagent, Bu₂-SnFH-HMPA, bears strong Lewis acidity and forms a chelate intermediate with 1 to provide anti-2,3-epoxy alcohols 2. The Lewis acidity of the tin atom of type B can be increased by the electronegative fluorine substituent in spite of the coordinated disturbance by HMPA. Type C reagents, $Bu_3SnH-Bu_4NX$ (X = F, CN), act as typical hydride donors and reduce 2,3-epoxy ketones 1 to give syn-2,3-epoxy alcohols 3 in excellent yields because of a "non-chelation" reduction of the carbonyl moieties by the activated Sn-H bond.

Experimental Section

Analysis. ¹H, ¹³C, ¹⁹F, and ¹¹⁹Sn NMR spectra were recorded at 400, 100, 376, and 149 MHz, respectively. Samples for ¹H and ¹³C, NMR spectra of produced alcohols were examined in deuteriochloroform (CDCl₃) containing 0.03% (w/ v) of tetramethylsilane. Samples for ¹H, ¹³C, and ¹¹⁹Sn NMR spectra of tin hydrides were examined in tetrahydrofuran-d₈ containing tetramethyltin. Samples for ¹⁹F NMR spectra of tin hydrides were measured relative to external fluorobenzene in tetrahydrofuran- d_8 . GLC analyses were performed with a FFAP (2-m \times 3-mm glass column). Column chromatography was performed by using Wakogel C-200 mesh silica gel. Preparative TLC was carried out on Wakogel B-5F silica gel. Yields were determined by ¹H NMR or GLC using internal standards.

Materials. Tri-n-butyltin hydride (Bu₃SnH) and di-nbutyltin dihydride (Bu₂SnH₂) were, respectively, prepared by the reduction of tri-n-butyltin chloride (Bu₃SnCl) and di-nbutyltin dichloride (Bu₂SnCl₂) with LiAlH₄.³⁰ Di-n-butyltin halide hydrides (Bu_2SnXH ; X = Cl, I) were synthesized by the redistribution reaction between Bu₂SnH₂ and Bu₂SnX₂.^{10a} Bu₂-SnXH-HMPA (X = F, I) was synthesized by the redistribution reaction between Bu₂SnH₂ and Bu₂SnX₂ in the presence of HMPA. 2,3-Epoxy ketones 1 were prepared by the oxidation of the corresponding 2,3-unsaturated ketones using alkaline hydrogen peroxide.³¹ THF was freshly distilled over sodium benzophenone ketyl, and HMPA was distilled over finely powdered calcium hydride. All reactions were carried out under dry nitrogen.

Representative Procedure for Chemoselective Reduction of Epoxide. To the solution of Bu₂SnH₂ (0.5 mmol) in 1 mL of THF were added Bu₂SnI₂ (0.5 mmol) and HMPA (1 mmol). The mixture was stirred at room temperature for 10 min. 2,3-Epoxy ketone 1 (1 mmol) was added at 0 °C, and then the solution was stirred until the Sn-H absorption (1858 cm⁻¹) disappeared in the IR spectrum. After quenching with MeOH (5 mL), volatiles were removed under reduced pressure. The residue was subjected to column chromatography, eluting with hexane-EtOAc (1:2), to give a crude product 4. Further purification of 4 was performed by TLC, eluting with hexanediethyl ether (1:1).

3-Hydroxy-1-phenyl-1-butanone (4a): colorless liquid; IR (neat) 3300 and 1650 cm⁻¹; ¹H NMR (CDCl₃) δ 1.30 (d, 3H, J = 6.35 Hz), 3.05 (dd, 1H, J = 8.79 and 17.58 Hz), 3.17 (dd, 1H, J = 2.93 and 17.58 Hz), 3.35 (br, 1H), 4.37-4.45 (m, 1H), 7.44–7.96 (m, 5H); $^{13}\mathrm{C}$ NMR (CDCl₃) δ 22.39, 46.47, 63.97, 128.01, 128.64, 133.48, 136.67, 200.77; HRMS calcd for C₁₀H₁₂O₂ 164.0838, found 164.0831.

3-Hydroxy-1-phenyl-1-propanone (4b): colorless liquid; IR (neat) 3300 and 1670 cm⁻¹; ¹H NMR (CDCl₃) δ 3.22 (t, 2H, J = 5.37 Hz), 4.02 (t, 2H, J = 5.37 Hz), 7.43–7.97 (m, 5H); ¹³C NMR (CDCl₃) δ 40.36, 57.98, 127.97, 128.61, 133.44, 136.60, 200.38; HRMS calcd for C₉H₁₀O₂ 150.0681, found 150.0681.

 ^{(25) (}a) Smith, W. B. J. Org. Chem. 1984, 49, 3219–3220. (b) Ranu,
B. C.; Das, A. R. J. Chem. Soc., Chem. Commun. 1990, 1334–1335. (26) Otsubo, K.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1987, 28, 4435-4436

⁽²⁷⁾ Cram, D. J.; Elhafez, F. A. A. J. Am. Chem. Soc. 1952, 74, 5828 - 5835

⁽²⁸⁾ It is not clear for the formation of Cram's chelation model whether the transition state is a seven-coordinate complex or the ligand exchange between HMPA and epoxy oxygen of ${\bf 1}$ occurs.

⁽²⁹⁾ Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 18, 2199-2203.

^{(30) (}a) Finholt, A. E.; Bond, Jr. A. C.; Wilzbach, K. E.; Schlesinger, H. Ì. *J. Am. Chem. Soc.* **1947**, *69*, 2692–2696. (b) Kerk, G. J. M.; Noltes, J. G.; Luijiten, J. G. A. *J. Appl. Chem.* **1957**, *7*, 366–369.

⁽³¹⁾ Hasegawa, E.; Ishiyama, K.; Horaguchi, T.; Shimizu, T. J. Org. Chem. 1991, 56, 1631–1635.

3-Hydroxy-1-cyclohexanone (4c): colorless liquid; IR (neat) 3305 and 1690 cm⁻¹; ¹H NMR (CDCl₃) δ 1.66–2.34 (m, 7H), 2.42 (dd, 1H, J = 7.32 and 14.16 Hz), 2.66 (dd, 1H, J = 3.91 and 14.16 Hz), 4.17–4.22 (m, 1H); ¹³C NMR (CDCl₃) δ 20.64, 32.79, 40.92, 50.42, 69.75, 209.95; HRMS calcd for C₆H₁₀O₂ 114.0681, found 114.0682.

3-Hydroxy-1-cyclopentanone (4d): colorless liquid; IR (neat) 3350 and 1680 cm⁻¹; ¹H NMR (CDCl₃) δ 2.02–2.50 (m, 6H), 3.15 (br, 1H), 4.59–4.63 (m, 1H); ¹³C NMR (CDCl₃) δ 31.83, 35.48, 47.58, 69.34, 218.59; HRMS calcd for C₅H₈O₂ 100.0524, found 100.0502.

Stereoselective Synthesis of 1,2-Diols. To the solution of Bu₂SnF₂ (1 mmol) in 1 mL of THF was added Bu₂SnH₂ (1 mmol) and HMPA (2 mmol). The mixture was stirred at room temperature for 10 min. 1,3-Diphenyl-2,3-epoxy-1-propanone **1e** (2 mmol) was added, and the mixture was stirred until the Sn-H absorption (1869 cm⁻¹) disappeared in the IR spectrum. After the reaction was quenched with MeOH (5 mL), volatiles were removed under reduced pressure. The residue was subjected to column chromatography, eluting with hexane-EtOAc (1:1), to give an *anti*-rich mixture of alcohols **2e** and **3e** (91:9). Further purification of diastereomers was performed by TLC, eluting with hexane-diethyl ether (1:1).

A solution of Bu₄NCN (2 mmol) in THF (2 mL) was stirred at -78 °C. Bu₃SnH (2 mmol) and 1,3-diphenyl-2,3-epoxy-1propanone **1e** (2 mmol) were added. Stirring was continued until the Sn-H absorption (1809 cm⁻¹) disappeared in the IR spectrum. After the reaction was quenched with MeOH (5 mL), volatiles were removed under reduced pressure. The residue was subjected to column chromatography, eluting with hexane–EtOAc (1:1), to give a *syn*-rich mixture of alcohols, **2e** and **3e** (14:86).

anti- and *syn*-1,3-Diphenyl-2,3-epoxy-1-propanol (2e and 3e): pale yellow liquid; IR (neat) 3400 cm⁻¹; HRMS calcd for C₁₅H₁₄O₂ 226.0994, found 226.0999; ¹H NMR (CDCl₃) **2e**: δ 2.57 (d, 1H, J = 2.44 Hz), 3.28 (dd, 1H, J = 1.95 and 2.93 Hz), 4.13 (d, 1H, J = 1.95 Hz), 4.98 (dd, 1H, J = 2.44 and 2.93 Hz), 7.23-7.44 (m, 10H); **3e**: δ 2.77 (br, 1H), 3.29 (dd, 1H, J = 1.95 md 4.88 Hz), 4.00 (d, 1H, J = 1.95 Hz), 4.70 (d, 1H, J = 4.88 Hz), 7.22-7.46 (m, 10H); ¹³C NMR (CDCl₃) **2e** δ 55.0, 64.9, 71.2, 125.7, 126.5, 128.3, 128.3, 128.5, 128.7, 136.5, 139.2; **3e** δ 56.9, 65.7, 73.3, 125.7, 126.2, 128.2, 128.4, 128.5, 128.7, 136.3, 140.1.

The solution of the isolated product **2e** or **3e** (1 mmol) in THF (1 mL) was added to the mixture of Bu_2SnH_2 (0.5 mmol) and Bu_2SnI_2 (0.5 mmol) in the presence of HMPA (1 mmol). Stirring was continued at 70 °C for 3 h. After the reaction was quenched with MeOH (5 mL), volatiles were removed under reduced pressure. The residue was subjected to column chromatography, eluting with hexane–EtOAc (1:1), to give a *anti*-rich or a *syn*-rich mixture of 1,2-diols, **5** (91:9) or **6** (13: 87). Further purification of diastereomers was performed by TLC, eluting with hexane–diethyl ether (1:1). The stereo-chemistry of diastereomers was assigned by ¹H NMR in comparison with stereochemically defined authentic samples.¹³

anti-1,2-Dihydroxy-1,3-diphenylpropane (5): colorless liquid, purified by TLC; IR (neat) 3300 cm⁻¹; ¹H NMR (CDCl₃) δ 1.94 (d, 1H, J = 3.91 Hz), 2.56 (d, 1H, J = 3.42 Hz), 2.63 (dd, 1H, J = 9.77 and 13.68 Hz), 2.72 (dd, 1H, J = 3.91 and 13.68 Hz), 4.01–4.07 (m, 1H), 4.77 (dd, 1H, J = 3.42 and 3.90 Hz); ¹³C NMR (CDCl₃) δ 37.60, 76.02, 76.32, 126.47, 126.70, 127.90, 128.44, 128.54, 129.36, 138.30, 140.26; HRMS calcd for C₁₅H₁₆O₂ 228.1151, found 228.1131.

syn-1,2-Dihydroxy-1,3-diphenylpropane (6): colorless liquid, purified by TLC; IR (neat) 3300 cm⁻¹; 1H NMR (CDCl₃) δ 2.51 (d, 1H, J = 3.91 Hz), 2.59 (dd, 1H, J = 8.79 and 13.67 Hz), 2.67 (dd, 1H, J = 3.91 and 13.67 Hz), 3.05 (d, 1H, J = 3.90 Hz), 3.85–3.91 (m, 1H), 4.46 (dd, 1H, J = 3.91 and 6.34 Hz); ¹³C NMR (CDCl₃) δ 39.32, 76.70, 76.84, 126.41, 126.85, 128.04, 128.44, 128.50, 129.29, 1138.09, 140.90; HRMS calcd for C₁₅H₁₆O₂ 228.1151, found 228.1160.

¹H, ¹³C, ¹⁹F, and ¹¹⁹Sn NMR Studies. Chemical shifts for ¹H and ¹¹⁹Sn NMR were measured relative to Me₄Sn. Chemical shifts for ¹³C NMR were measured relative to THF-*d*₈. Chemical shifts for ¹⁹F NMR were measured relative to external fluorobenzene. **Bu₂SnH₂.** In a small flask, Bu₂SnH₂ (3.96 mmol) was kept under dry N₂ in 0.5 mL of THF-*d*₈ containing Me₄Sn; 0.8 mL of the solution was transferred to a 5 φ NMR tube. NMR spectra were recorded at room temperature (24 °C): ¹H NMR-(7.91 mmol in 1 mL of THF-*d*₈) δ 4.47 (Sn-H, ¹J(¹¹⁹Sn-¹H) = 1681 Hz, ¹J(¹¹⁷Sn-¹H) = 1606 Hz); ¹³C NMR (rt) δ 7.6 (¹J(¹¹⁹Sn-¹³C_α) = 376 Hz, ¹J(¹¹⁷Sn-¹³C_α) = 359 Hz), 14.3, 27.7 (³J(Sn-¹³C_γ) = 58 Hz), 31.3 (²J(Sn-¹³C_β) = 24 Hz); ¹¹⁹Sn NMR (rt) δ -205.4 (t); FT-IR (neat) ν(Sn-H) = 1836.5 cm⁻¹.

Bu₂SnI₂ (8.00 mmol in 1 mL of THF- d_8); ¹¹⁹Sn NMR (rt) δ -57.7 (s).

Bu₂SnIH (8.00 mmol in 1 mL of THF-*d*₈); ¹H NMR (rt) δ 6.41 (Sn-H, ¹*J*(¹¹⁹Sn-¹H) = 2060 Hz, ¹*J*(¹¹⁷Sn-¹H) = 1968 Hz); ¹³C NMR (rt) δ 14.1, 17.3 (¹*J*(¹¹⁹Sn-¹³C_α) = 408 Hz, ¹*J*(¹¹⁷Sn-¹³C_α) = 390 Hz), 26.7 (³*J*(Sn-¹³C_γ) = 74 Hz), 29.7 (²*J*(Sn-¹³C_β) = 29 Hz); ¹¹⁹Sn NMR (rt) δ -76.3 (d); FT-IR (neat) ν (Sn-H) = 1846.1 cm⁻¹.

Bu₂SnIH–**HMPA** (8.17 mmol in 1 mL of THF-*d*₈); ¹H NMR (rt) δ 7.18 (Sn–H, ¹*J*(¹¹⁹Sn–¹H) = 2349 Hz, ¹*J*(¹¹⁷Sn–¹H) = 2253 Hz); ¹³C NMR (rt) δ 14.4, 23.7 (¹*J*(Sn–¹³C_α) = 513 Hz), 27.1 (³*J*(Sn–¹³C_γ) = 84 Hz), 29.5; ¹¹⁹Sn NMR (rt) δ –169.9 (d); FT-IR (neat) ν (Sn–H) = 1857.7 cm⁻¹.

Bu₂SnH₂-HMPA (8.34 mmol in 1 mL of THF-*d*₈); ¹H NMR (rt) δ 4.46 (Sn-H, ¹*J*(¹¹⁹Sn-¹H) = 1670 Hz, ¹*J*(¹¹⁷Sn-¹H) = 1596 Hz); ¹³C NMR (rt) δ 7.7 (¹*J*(¹¹⁹Sn-¹³C_α) = 378 Hz, ¹*J*(¹¹⁷Sn-¹³C_α) = 361 Hz), 14.3, 27.7 (³*J*(Sn-¹³C_γ) = 57 Hz), 31.3 (²*J*(Sn-¹³C_β) = 24 Hz); ¹¹⁹Sn NMR (rt) δ -204.5 (t); FT-IR (neat) ν (Sn-H) = 1836.5 cm⁻¹.

Bu₂SnFH–**HMPA** (7.96 mmol in 1 mL of THF-*d*₈); ¹H NMR (rt) δ 7.44 (Sn–H, ¹*J*(¹¹⁹Sn–¹H) = 2428 Hz, ¹*J*(¹¹⁷Sn–¹H) = 2321 Hz, *w*_{1/2} = 4.4 Hz); ¹³C NMR (rt) δ 14.4, 19.8 (¹*J*(¹¹⁹Sn–¹³C_α) = 547 Hz, ¹*J*(¹¹⁷Sn–¹³C_α) = 541 Hz), 27.7 (³*J*(Sn–¹³C_γ) = 82 Hz), 28.9 (²*J*(Sn–¹³C_β) = 29 Hz); ¹¹⁹Sn NMR (rt) δ -123.0 (d, *w*_{1/2} = 485 Hz); ¹⁹F NMR (3.99 mmol in 1 mL of THF-*d*₈, rt) δ -163.8 (br, *w*_{1/2} = 1169 Hz); FT-IR (neat) ν (Sn–H) = 1869.2 cm⁻¹.

Bu₃SnH (5.98 mmol in 1 mL of THF- d_8); ¹H NMR (rt) δ 4.772 (1H, ¹J(¹¹⁹Sn⁻¹H) = 1594 Hz ¹J(¹¹⁷Sn⁻¹H) = 1524 Hz, Sn-H); ¹¹⁹Sn NMR δ -90.3 (d, ¹J(¹¹⁹Sn⁻¹H) = 1595 Hz).

Bu₃SnH–Bu₄NF. To a solution of Bu₄NF (1.00 mmol) in THF-*d*₈ (1 mL) was added Bu₃SnH (1.07 mmol) at -78 °C in the presence of HMPA (2.01 mmol). NMR spectra were recorded at variable temperatures: ¹¹⁹Sn NMR (-30 °C) δ -88.5 (s), -89.6 (d, ¹*J*(¹¹⁹Sn⁻¹H) = 1565 Hz), -157.3 (t, ¹*J*(¹¹⁹Sn⁻¹⁹F) = 1826 Hz); ¹¹⁹Sn NMR (-15 °C) δ -87.3 (s), -89.5 (d, ¹*J*(¹¹⁹Sn⁻¹H) = 1568 Hz), -156.8 (t, ¹*J*(¹¹⁹Sn⁻¹H) = 1816 Hz); ¹¹⁹Sn NMR (-5 °C) δ -86.4 (s), -89.4 (d, ¹*J*(¹¹⁹Sn⁻¹H) = 1624 Hz), -155.4 (t, ¹*J*(¹¹⁹Sn⁻¹⁹F) = 1815 Hz); ¹¹⁹Sn NMR (rt) δ -84.1 (s), -152.7 (t, ¹*J*(¹¹⁹Sn⁻¹⁹F) = 1799 Hz).

Bu₃SnSnBu₃. The NMR spectrum of a THF-*d*₈ solution of ca. 1 mmol of Bu₃SnSnBu₃ isolated from the mixture of Bu₃-SnH-Bu₄NF and HMPA was recorded at rt: ¹¹⁹Sn NMR δ -84.4 (s, ¹*J*(¹¹⁹Sn⁻¹¹⁹Sn) = 2574 Hz); HRMS calcd for C₂₄H₅₃-Sn₂ 582.2272, found 582.2263. Commercially available Bu₃-SnSnBu₃ (8.07 mmol in 1 mL of THF-*d*₈); ¹¹⁹Sn NMR (rt) δ -84.2 (s, ¹*J*(¹¹⁹Sn⁻¹¹⁹Sn) = 2589 Hz).

Acknowledgment. This work was financially supported by the JSPS Fellowships for Japanese Junior Scientists and a Grant-in Aid for Scientific Research on Priority Area of Reactive Organometallics No. 05236102 from the Ministry of Education, Science and Culture. Thanks are due to Mrs. Y. Miyaji and Mr. H. Moriguchi, Faculty of Engineering, Osaka University, for assistance in obtaining NMR and HRMS spectra.

Supporting Information Available: Copies of ¹H and ¹³C NMR spectra of **2e**, **3e**, **4a-d**, **5**, and **6** (14 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO9512416